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A method is developed for determining the average emissivity of a volume~ based on 
a comparison of volumes of various shapes with the same characteristic sizei The 
selectivity of the radiation leads to a sharp decrease in the maximum error as com- 
pared with the calculation for monochromatic radiation. 

Three methods for calculating average emissivities of various shaped volumes are des- 
cribed in [i]. Essentially they all use the fact that volumes with the same characteristic 
size lo = 4V/F havenearly the same emissivities. We develop a comparison method in which 
the emissivity of a slab is taken as a standard. We investigate the dependence of the dif- 
ferences Ae i = si-eo on the size Io, the nature of the radiation, and the temperature of 
the gas. The final aim of the studies is the creation of a convenient engineering method 
of calculatio N based on tables or graphs of eo and graphs of the differences Ae i constructed 
for volumes of simple shapes. 

Figure i shows the effect of the shape of a body and the size ~o/2 on the differences 
As i for monochromatic or gray radiation. Curves i and 2 were constructed long ago; curve 5 
up to a~o = 2 is in [i] (Fig. i0!). The remaining curves and the part of curve 5 for a~o > 
2 appear here for the first time. 

If we limit ourselves to the range of optical thicknesses where the differences A~ i are 
important, the sphere represents the limiting case with the largest emissivity. The curves 
do not have definite lower bounds. 

The parts of the surface close to the edges and corners play a special role. Rays emer- 
ging through these parts are mostly short. Therefore, their contribution to the total radi- 
ation becomes significant only for sufficiently large aZo. The ratio of these parts to the 
total surface of a body increases in the sequence 2, 3, ..., 7. Consequently, the differ- 
ences IAeImax having a negative sign increase also. A certain displacement of the minima is 
observed. 

On the basis of the above considerations the following can be predicted. The curve for 
a bar with a triangular cross section passes below curve 5 and occupies the lowest position 
for bars whose cross sections are regular polyhedra. On the other hand, the curve for a bar 
with a regular pentagonal cross section passes above curve 5. For cross sections which are 
irregular polyhedra, for example, a wedge, the solution cannot be so definite. Similar con- 
siderations lead to the conclusion that the curve for a regular tetrahedron passes below the 
curve for a cube and occupies the limiting position among the curves for regular polyhedra. 

It is considerably more complicated to predict the result forbodies with concave parts. 
In a number of cases complex forms can be built up from simple shapes and their emissivities 
can be determined by an elementary calculation. As an example, we consider a sphere with a 
washer around it in a diametral plane. The volumes of the bodies are assumed the same. The 
ratio of the diameter of the sphere to the thickness of the washer is 12. With negligible 
error the washer can be considered an infinite plane layer. The partial decrease of the 
surface of the sphere can be neglected. Then the average emissivity of the combination of 
the layer and the sphere can be determined in an elementary fashion. This case is shown by 
the open curve of Fig. I. In this example the fraction of the portions of the surface with 
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relatively short ray lengths is hypertrophied. 

Figure i gives an estimate of the value of Ac i after comparing the shape of the given 
body with the closeSt shape shown in the figure. The emissivity of the volume is 

eg ----- e o @ A~ i, e o = 1 - -  2 E  3 (cz/o/2). 

In a turbid medium with isotropic scattering it is necessary to use the argument Zo = 
klo. The effect of anisotropic scattering is not considered here. The following approxima- 
tion is recommended for the exponential integral Es: 

E 3 (x) = 0 , 0 3 1 4 e  -8"8~ ,a_ 0 , 2 2 2 2 e  -2~  + 0 , 2 4 6 4 e - ' . 1 2 ~ !  

The approximate formula underestimates E3 (x) by 0.3% for x = 0.i, by 0.34% for x = 1.8, 
and overestimates E3 by 0.55% for x = 0.8. These are the maximum deviations in the interval 
0 = x ~ 2. For x > 2 the function is so small that the error in its evaluation is insignifi- 
cant. In the most accurate calculations a table of values of so must be used. 

Example. We determine the monochromatic emissivity averaged over the surface of a paral- 
ielepipedwithsides: A =im, H = 2 m, L = 4 m, ~ = i m -I. With these values ~Zo/2 = 0.5715. 

Curves 6 and 7 of Fig. i are for bodies of nearly the same shape; a square bar with a 
length I0 times that of a side of its cross section and a cube. In relative length (l = 
L/A = 4) the given body is in between bodies 6 and 7, but closer to body 6. The cross sec- 
tion of the body is flattened in comparison with bodies 6 and 7. In Fig. i this gives a 
further shift of the ordinate toward decreasing Ae. Therefore we determine Ae = 0.006 half- 
way between curves 6 and 7. We note that for ~Io/2 > 0.7 the signs of the shifts with res- 
pect to curve 6 are different. 

We determine go from a table of values of Es: go = i -- 2E3 (0.5715) = 0.5995. We obtain 
gi = 0.5995 + 0.006 = 0.6055. 

The result is easily checked by the tables in [7]. We find the emissivity of each face 
from the expression 

= 1 - -  ~a8 - -  2 ~ c - -  2 ~ c .  

The quantities ~'AC and ~"AC here refer to the different lateral faces C. The emissivities 

of the faces are 

2 • 4,  e 1 = 0 . 6 2 3 5 ;  

1 • 4, e 2 = 0 . 5 9 2 9 ;  

1 • 2,  % = 0 . 5 5 8 6 .  

We determine the average emissivity over all the faces from the expression 

= (8e I + 4% + 2%)/14 = 0.6055. 

The complete agreement of the results is fortuitous, since the tables of angular coeffi- 
cients used nine times in the calculation have errors in the fourth decimal place. 

The example shows clearly the simplicity and reliability of the method based on the use 

of the curves of Fig. i. 

Remarks on Fig. i. Tables and approximate formulas of angular coefficients published in 
a series of papers by the authors were used to construct the new curves. 

The values of ~o and gl were calculated by exact formulas. Values of ~2 are tabulated 

by various authors. 

For a finite cylinder (curves 3 and 4) 

el = 1 - -  [%s + 2h  (%~ + 4%s)1/(1 + 2h). 

Here the subscripts i and 3 denote the ends and subscript 2 denotes the lateral surface. 
We used the tables of angular coefficients in [3,4] and approximate equations in [3]. 

For a square bar 

= I - - ~ A B - - 2 ~ A C .  
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Fig. i. Ag i = ei-ao as a function of the dimensionless characteristic size alo/2 
for monochromatic radiation: i) sphere; 2) infinite circular cylinder; 3) circular 
cylinder with H/D = 3; 4) the same for H/D = i; 5) infinitely long square bar; 6) 
square bar whose length is i0 times that of a side of its cross section; 7) cube; 
8) combination body consisting of a sphere and a slab. 

Fig. 2. Differences in emissivities of a sphere and a slab as a function of size 
P/o at various temperatures, i) 600~ 2) 800; 3) i000; 4) 1200; 5) 1400; 6) 1600; 
7) 1800; 8) i000; 9) 1600; i0) 800; !i) 1200; 12) 1400; 13) 1800; 14) 600; a) 
curves for water vapor; b) curves for carbon dioxide; p, partial pressure; p/o in 
m'atm. 

Subscripts B and C denote the sides of the bar parallel and perpendicular to its base A. Up 
to ~lo = 2 the values were found from tables in [5]. For 3.3 ~ elo ~ i0 the approximate 
formulas in [6] were used. 

For a band spectrum 

~ lojAeiJA~ A e i -  aT* " 
i 

The values of Asi~ and Asij can be estimated from Fig. 1 if the spectral absorption 
coefficients or their values averaged over the band are known. Depending on the part of the 
spectrum the quantities Aeim have different values and can even change sign. Therefore the 
values of As i integrated over the spectrum will always be smaller than the maximum deviations 
&eim shown in Fig. i. This general consideration was presented in [i0]. Now it is illustra- 
ted by the example of carbon dioxide and water vapor (Fig. 2). Some of the data were taken 
from [ii] but most of it is unpublished and was given us by A. S. Nevskii. The difference 
Aez is comparable in magnitude with the error in the values of go and sx accumulated in a 
painstaking calculational process. Therefore, the curves in Fig. 2 are rough. The scale of 
ordinates is appreciably larger than in Fig. i. The differences As obtained by taking 
account of the selectivity of the gases are almost an order of magnitude smaller. They de- 
crease particularly sharply for carbon dioxide, giving a flux with a sharper change of the 
spectral coefficient than for water vapor. Unfortunately there are no data in the literature 
for other gases or for bodies of other shapes. 

For a bar the positive differences Aes~ will be completely compensated by the negative 
differences hcsm. Therefore, one should expect the values of ~5 integrated over the spec- 
trum to be still smaller than the values of Asl. 

The emissivity of a layer of a real medium can be determined from the approximate ex- 
pression [i0] 

e o = 0.0628s (8.8x) + 0.44448 (2x) @ 0.4928e (I. 125x). 
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Here 8(8.8x) is the one-dimensional emissivity for the temperature of the medium and a 
thickness8.8x. 

The decrease in the differences Ae i in the transition from monochromatic radiation to an 
actual spectrum greatly favors a wider use of the recommended method of calculation. 

NOTATION 

I o = 4V/F, characteristic size of volume; V, volume; F, surface of body; co, emissivity 
of a sl~b; el, average emissivities of other shaped volumes of the same size Io; ~, absorp- 
tion coefficient, m-l; k, attenuation coefficient, m-l; E3, third-order exponential integral; 
~, wave number, cm-:; ~, wavelength, ~; low, Planck function, W cm/m. ster; loj, the same for 
center of band j; ~, angular coefficient taking account of attenuation of radiation in the 
medium separating the surfaces; H, height of cylinder, m; D, diameter, m; L, length of paral- 
lelepiped, m; h = H/D; I = L/A; A, base of cross section of body; x = pl; p, partial pressure 
of radiating gas. 
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